Cum a descoperit un tânăr, într-o noapte fără somn, procedura revoluționară care ar putea vindeca toate bolile genetice
O nouă tehnică deumită CRISPR ar putea vindeca aproape toate bolile genetice ereditare. Este o procedură revoluționară, dacă nu chiar miraculoasă. Și ar putea fi folosită la scară largă foarte curând.
O nouă formă de editare ADN mai puţin predispusă la erori ar putea corecta mult mai multe mutaţii genetice periculoase decât tehnologia disponibilă astăzi, susţine publicaţia The Wire.
Articolul începe cu un portret al unui om de ştiinţă: în vara lui 2017, Andrew Anzalone era neliniştit. Anul se apropia de final, ca şi doctoratul său de la Universitatea Columbia. Într-o noapte fără somn, o idee a început să-i dea târcoale.
Editarea genetică CRISPR, cu toată precizia sa de decupare a ADN-ului, a fost mereu bună la secţionare. Însă dacă vrei să înlocuieşti o genă defectă cu una sănătoasă, lucrurile devin mai complicate.
În afara faptului că programezi o bucată din ghidul ARN ca să-i comanzi lui CRISPR unde să taie, trebuie să livrezi o copie a noului ADN astfel creat şi apoi să speri că maşinăria de autoreparare a celulei o instalează corect. Ceea ce, de cele mai multe ori, nu se întâmplă. Anzalone s-a întrebat dacă nu cumva există o modalitate de a combina aceste două etape, astfel încât o singură moleculă să-i spună lui CRISPR ce editări să facă şi unde să facă schimbările. Inspirat, s-a grăbit în apartamentul său din Chelsea şi a lucrat toată noaptea.
Câteva luni mai târziu, ideea şi-a găsit locul în laboratorul lui David Liu, chimistul de la Broad Institute care a dezvoltat recent o serie de sisteme CRISPR adaptate chirurgiei, denumite „editoare de bază". Anzalone s-a alăturat laboratorului în 2018 şi împreună au început să construiască plăsmuirea ivită în imaginaţia tânărului doctorand. După multe încercări eşuate, au descoperit ceva şi mai puternic. Sistemul, pe care laboratorul lui Liu l-a denumit "editare primă" putea face, pentru prima dată, aproape orice alterare - adăugări, ştergeri, înlocuirea fiecarei litere individuale cu o altă- fără să reteze elicea dublă a ADN-ului. „Dacă Crispr-Cas9 e precum foarfecele şi editorii de bază precum creioanele, aceşti editori primi sunt ca procesoarele de text", le-a spus Liu reporterilor într-o conferinţă de presă.
Descoperirea are puternicul potenţial să schimbe felul în care edităm celulele şi ne va transforma viaţa
Dar de ce e atât de important acest lucru? Pentru că, graţie unui control atât de precis asupra codului genetic, editarea primă ar putea, potrivit calculelor lui Liu, să corecteze în jur de 89% din mutaţiile care cauzează bolile genetice ereditare. Lucrând în culturile de celule umane, laboratorul său a folosit deja editarea primă ca să repare erorile genetice care cauzează siclemia, fibroza chistică şi boala Tay-Sachs. Acestea sunt doar trei din cele peste 175 de editări posibile pe care grupul le-a dezvăluit într-un articol ştiinţific publicat în jurnalul Nature. Descoperirea are puternicul potenţial să schimbe felul în care edităm celulele şi ne va transforma viaţa", declară Gaétan Burgio, un genetician de la Universitatea Naţională Australiană, impresionant de gama de schimbări pe care procedura le poate face, inclusiv de adăugarea de până la 44 de litere ADN şi ștergerea de până la 80. „În total, eficienţa editării şi versatilitatea demonstrată în această lucrare sunt remarcabile."
Classic Crispr, cel mai folosit instrument de editare în acest moment, este făcut din două părţi: o enzimă ce feliază ADN-ul, pe nume Cas9, şi o componentă din ghidul ARN care spune „taie aici, dar nu aici." Alte enzime pot fi direcţionate să anuleze o genă sau să desfacă doar un pic din DNA cât să-i schimbe o literă cu alta.
Editorul prim al lui Anzalone e puţin diferit. Enzima sa e alcătuită, de fapt, din două, care fuzionează: o moleculă care se comporta ca un scalpel, combinată cu ceva ce se numeşte reverstranscriptază şi care converteşte ARN-ul în ADN. Ghidul său ARN e puţin diferit: nu numai că găseşte ADN-ul ce trebuie reparat, dar poartă cu sine o copie a editări ce trebuie făcută. Atunci când localizează ADN ţintă, face o mică tăietură şi începe să adauge secvenţa corectată de ADN literă cu literă, ca ciocănelele unei maşini de scris. Rezultatul sunt două clapete redundante de ADN - cea orginală şi cea editată. Apoi AND-ul celulei intervine ca să îndepărteze originalul, instalând permament editarea dorită. Tehnica oferă o mai mare flexibilitate editării ADN, dar teoria mai trebuie testată.
Problema cea mai mare, potrivit unor indivizi ca Burgio, este că aceşti editori primi sunt uriaşi în termeni moleculari. Sunt atât de mari, încât nu se împachetează corect în viruşii pe care cercetătorii îi folosesc ca vehicule pentru a edita celulele. Aceşti coloşi ar putea chiar înfunda acele de microinjecţie, făcând dificilă livrarea în embrionii de şoarece sau cei umani. Asta face ca metoda să fie mai puţin practică decât tehnica deja existentă. Însă acel lucru nu-l împiedică pe Liu să continue să lucreze la proiect. În septembrie, a fondat compania Prime Medicine pentru a dezvolta tratamente pentru boli genetice. Totuşi, va mai dura ani de zile până când primele experimente umane vor putea începe.
Anzalone e încă uimit de cât de repede poate evolua totul în lumea Crispr, de la o simplă curiozitate, la o maşină moleculară funcţională. „Sunt lucruri pe care acum le poţi face şi care, până de curând, păreau imposibile", spune el.
- Etichete:
- adn
- boli genetice
- crispr
Urmărește știrile Digi24.ro și pe Google News